线性和非线性脉冲传输软件Fiberdesk
  • 线性和非线性脉冲传输软件Fiberdesk
  • 线性和非线性脉冲传输软件Fiberdesk

简介

非线性脉冲传输变得容易了

Fiberdesk是一种用于线性和非线性脉冲传输的软件。它基于通过分步傅立叶变换方法求解扩展的非线性薛定谔方程,并且能够将其与速率方程模拟相结合。

每个Fiberdesk软件的许可证都受硬件加密狗的保护。它可以作为计算机的本地无驱动USB密钥订购,在运行Fiberdesk软件时需要保持插入计算机的状态。

线性和非线性脉冲传输软件Fiberdesk
Fiberdesk软件界面一
线性和非线性脉冲传输软件Fiberdesk
Fiberdesk软件界面二
线性和非线性脉冲传输软件Fiberdesk
Fiberdesk软件界面三

Fiberdesk下载

最新更新:2023年 12 月 18日

插入 Fiberdesk 加密狗。 下载最新的包并简单地运行可执行文件。

Fiberdesk下载链接

最新的软件包包括 64 位版本:

   – Fiberdesk 7.0 版

   – 用于 Fiberdesk 文件的 python 阅读器,例如定制

   – 功能列表

线性和非线性脉冲传输软件Fiberdesk
线性和非线性脉冲传输软件Fiberdesk

发表的文章 (文章中使用Fiberdesk软件进行模拟)

[88] Yu Xin Jin, Qian Qian Hao, Jing Jing Liu, Jie Liu and Qian Qian Peng, “Numerical investigation of a wideband supercontinuum source based on a large-mode-area photonic crystal fiber pumped at 1.3 μm,” Laser Phys. 34, 045701 (2024).

[87] Zobus, Yannik, “Design and Implementation of a High-Contrast, Millijoule-Level Ultrafast Optical Parametric Amplifier for High-Intensity Lasers.” Technische Universität Darmstadt, Dissertation, Erstveröffentlichung, Verlagsversion (2023).

[86] Victor Hariton, Ammar Bin Wahid, Gonçalo Figueira, Kilian Fritsch, and Oleg Pronin, “Multipass spectral broadening and compression in the green spectral range,” Opt. Lett. 47, 1246-1249 (2022).

[85] Atsushi Ishizawa, Kota Kawashima, Rai Kou, Xuejun Xu, Tai Tsuchizawa, Takuma Aihara, Koki Yoshida, Tadashi Nishikawa, Kenichi Hitachi, Guangwei Cong, Noritsugu Yamamoto, Koji Yamada, and Katsuya Oguri, “Direct f-3f self-referencing using an integrated silicon-nitride waveguide,” Opt. Express 30, 5265-5273 (2022)

[84] Grande, Adrian, et al. “Sub-100 fs all-fiber polarization maintaining widely tunable laser at 2 µm.” Opt. Lett 47 (2022): 1545.

[83] Li, Yu, et al. “Fabrication of Step− Index Fluorotellurite Fibers with High Numerical Aperture for Coherent Mid—Infrared Supercontinuum.” Crystals 12.11 (2022): 1649.

[82] Nagl, Nathalie. “Reaching the Performance of State-of-the-Art Fiber-Pumped Systems.” A New Generation of Ultrafast Oscillators for Mid-Infrared Applications. Cham: Springer International Publishing, 2022. 71-93.

[81] Bao, Y., Dai, L., Jiang, J., Huang, Z., Huang, Q., Rozhin, A., Mou, C., Humidity Resistant Carbon Nanotubes-Styrene Methyl-Methacrylate Polymer Composite for Ultrafast Laser. Adv. Optical Mater. 2022, 2200461.

[80] William Renard, Clément Chan, Antoine Dubrouil, Jérôme Lhermite, Giorgio Santarelli and Romain Royon, “Agile femtosecond synchronizable laser source from a gated CW laser,”  Laser Phys. Lett. 19, 075105, (2022).

[79] Atsushi Ishizawa, Kota Kawashima, Rai Kou, Xuejun Xu, Tai Tsuchizawa, Takuma Aihara, Koki Yoshida, Tadashi Nishikawa, Kenichi Hitachi, Guangwei Cong, Noritsugu Yamamoto, Koji Yamada, and Katsuya Oguri, “Direct f-3f self-referencing using an integrated silicon-nitride waveguide,” Opt. Express 30, 5265-5273 (2022).

[78] D. Marion, G. Duchateau, and J.-C. Delagnes, “Control of nonlinear processes using versatile random photonic sources: Application to the energy deposition in a dielectric material,” Phys. Rev. A 105, 013525 (2022).

[77] Yu Zhang, Yaoyao Qi, Song Yang, Nannan Luan, Zhenxu Bai, Jie Ding, Yulei Wang, Zhiwei Lu,
High pulse energy, narrow-linewidth all-fiber 1064 nm picosecond master oscillator power amplifier system, Optics & Laser Technology, Volume 147, p.107636 (2022).

[76] Xuzhuo Jia, Yuanqi Song, Li Yan, Qimeng Lin, Lei Hou, Xiaoqiang Feng and Jintao Bai, “Yb-doped polarization-maintaining femtosecond fiber laser using Gires–Tournois interferometers for dispersion management,”  Appl. Phys. Express 14 112007 (2021).​

[75] Victor Distler, Friedrich Möller, Benjamin Yildiz, Marco Plötner, César Jauregui, Till Walbaum, and Thomas Schreiber, “Experimental analysis of Raman-induced transverse mode instability in a core-pumped Raman fiber amplifier,” Opt. Express 29, 16175-16181 (2021).

[74] Y. W. Lee, J. Y. Chuang, C. C. Lin, M. C. Paul, S. Das, and A Dhar, “High-efficiency picosecond mode-locked laser using a thulium-doped nanoengineered yttrium-alumina-silica fiber as the gain medium,” Opt. Express 29, 14682-14693 (2021).

[73] Lee, YW., Chen, CM., Chuang, WH. et al. Highly efficient mode-locked and Q-switched Er3+-doped fiber lasers using a gold nanorod saturable absorber. Sci Rep 11, 20079 (2021).

[72] Pia Fuertjes, Lorenz von Grafenstein, Dennis Ueberschaer, Chao Mei, Uwe Griebner, and Thomas Elsaesser, “Compact OPCPA system seeded by a Cr:ZnS laser for generating tunable femtosecond pulses in the MWIR,” Opt. Lett. 46, 1704-1707 (2021).

[71] Paul Repgen, Generation of High-Energy Pulses by Managing the Kerr-Nonlinearity in Fiber-Based Laser Amplifiers, Dissertation (2021).

[70] T. Zhou, Q. Du, D. Li, E. Esarey, C. Schroeder, C. Geddes, and R. Wilcox, “Distributed Spectral Filtering for Ultrafast Fiber Lasers,” in Laser Congress 2020 (ASSL, LAC), P. Schunemann, C. Saraceno, S. Mirov, S. Taccheo, J. Nilsson, A. Petersen, D. Mordaunt, and J. Trbola, eds., OSA Technical Digest (Optical Society of America, 2020), paper JTu5A.11.

[69] Rezki Becheker, Mohamed Touil, Saïd Idlahcen, Mincheng Tang, Adil Haboucha, Benoit Barviau, Frédéric Grisch, Patrice Camy, Thomas Godin, and Ammar Hideur, “High-energy normal-dispersion fiber optical parametric chirped-pulse oscillator,” Opt. Lett. 45, 6398-6401 (2020)

[68] Zhang, Z., Han, H., Tian, W. et al. A fully stabilized low-phase-noise Kerr-lens mode-locked Yb:CYA laser frequency comb with an average power of 1.5 W. Appl. Phys. B 126, 134 (2020).

[67] Victor Distler, Friedrich Möller, Maximilian Strecker, Gonzalo Palma-Vega, Till Walbaum, and Thomas Schreiber, “Transverse mode instability in a passive fiber induced by stimulated Raman scattering,” Opt. Express 28, 22819-22828 (2020)

[66] Oliver de Vries, Marco Plötner, Florian Christaller, Hao Zhang, Annika Belz, Benjamin Heinrich, Harald Kübler, Robert Löw, Tilman Pfau, Till Walbaum, Thomas Schreiber, and Andreas Tünnermann, “Highly customized 1010 nm, ns-pulsed Yb-doped fiber amplifier as a key tool for on-demand single-photon generation,” Opt. Express 28, 17362-17373 (2020)

[65] Paul Repgen, Benedikt Schuhbauer, Moritz Hinkelmann, Dieter Wandt, Andreas Wienke, Uwe Morgner, Jörg Neumann, and Dietmar Kracht, “Mode-locked pulses from a Thulium-doped fiber Mamyshev oscillator,” Opt. Express 28, 13837-13844 (2020)

[64] Craig Ingram, Huy Tuong Cao, Sebastian Ng, Daniel D. Brown, David Ottaway, Peter Veitch, Adam Gambell, Nikita Simakov, Alexander Hemming, “High precision measurement of optical absorption in low-OH fused silica at 2 micron,” Proc. SPIE 11200, AOS Australian Conference on Optical Fibre Technology (ACOFT) and Australian Conference on Optics, Lasers, and Spectroscopy (ACOLS) 2019, 1120031 (30 December 2019)

[63] O. de Vries, M. Plötner, T. Schreiber, R. Eberhardt, A. Tünnermann, „Fiber lasers: a power-scalable coherent light source for applications in space“, 

[62] T. P. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, K. F. Mak, C. Gaida, T. Heuermann, M. Gebhardt, J. Limpert, F. Krausz and I. Pupeza, Multi-octave spanning, Watt-level ultrafast mid-infrared source, Journal of Physics: Photonics, Volume 1, Number 4 (2019)

[61] Yu Li, Longfei Wang, Meisong Liao, Long Zhang, Wanjun Bi, Tianfeng Xue, Yinyao Liu, Renli Zhang, Yasutake Ohishic, “Suspended-core fluoride fiber for broadband supercontinuum generation,” Optical Materials, Volume 96, October 2019, 109281

[60] Masaki Tokurakawa, Hiromu Sagara, and Henrik Tünnermann, “All-normal-dispersion nonlinear polarization rotation mode-locked Tm:ZBLAN fiber laser,” Opt. Express 27, 19530-19535 (2019).

[59] Nathalie Nagl, Ka Fai Mak, Qing Wang, Vladimir Pervak, Ferenc Krausz, and Oleg Pronin, “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett. 44, 2390-2393 (2019).

[58] S. Kuhn, S. Hein, C. Hupel, J. Nold, F. Stutzki, N. Haarlammert, T. Schreiber, R. Eberhardt, A. Tünnermann, “High-power fiber laser materials: influence of fabrication methods and codopants on optical properties,” Proc. SPIE 10914, Optical Components and Materials XVI, 1091405 (27 February 2019).

[57] Seidel, Marcus (2018): A new generation of high-power, waveform controlled, few-cycle light sources. Dissertation, LMU München: Fakultät für Physik

[56] Ruihong Dai, Yafei Meng, Yao Li, Jiarong Qin, Shining Zhu, and Fengqiu Wang, “Nanotube mode-locked, wavelength and pulsewidth tunable thulium fiber laser,” Opt. Express 27, 3518-3527 (2019).

[55] M. Seidel, X. Xiao and A. Hartung, “Solid-Core Fiber Spectral Broadening at Its Limits,” in IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 5, pp. 1-8, Sept.-Oct. 2018.

[54] Li, F., Yang, Z., Wang, Y., Lv, Z., Wei, Y., Wang, X., … & Zhao, W. (2018). Nonlinear compression of ultrashort-pulse laser to 36fs with 556MW peak power. IEEE Photonics Technology Letters.

[53] Yang, K., Zheng, S., Wu, Y., Ye, P., Huang, K., Hao, Q., & Zeng, H. (2018). Low-repetition-rate all-fiber integrated optical parametric oscillator for coherent anti-Stokes Raman spectroscopy. Optics Express, 26(13), 17519-17528.

[52] Tang, M., Becheker, R., Hanzard, P. H., Tyazhev, A., Oudar, J. L., Mussot, A., … & Hideur, A. (2018). Low Noise High-Energy Dissipative Soliton Erbium Fiber Laser for Fiber Optical Parametric Oscillator Pumping. Applied Sciences, 8(11), 2161.

[51] Becheker, R., Tang, M., Hanzard, P. H., Tyazhev, A., Mussot, A., Kudlinski, A., Hideur, A. “High-energy dissipative soliton-driven fiber optical parametric oscillator emitting at 1.7 µm.” Laser Physics Letters, 15(11), 115103 (2018).

[50] Delagnes, J. C., Royon, R., Lhermite, J., Santarelli, G., Muñoz, H., Grosz, T., Cormier, E.  “High-power widely tunable ps source in the visible light based on four wave mixing in optimized photonic crystal fibers,” Opt. Expr. 26(9), 11265-11275 (2018).

[49] H. Sagara, A. Suzuki, S. KItajima, and M. Tokurakawa, “Two micron All-normal-dispersion NPR mode-locked Tm:ZBLAN fiber laser,” in Laser Congress 2018 (ASSL), OSA Technical Digest (Optical Society of America, 2018), paper ATu2A.25.

[48] Niu, F., Li, J., Yang, W., Zhang, Z., & Wang, A. “Fiber-Based High-Energy Femtosecond Pulses Tunable From 920 to 1030 nm for Two-Photon Microscopy,” IEEE Photonics Technology Letters, 30(16), 1479-1482 (2018).

[47] Zaharit Refaeli, Yariv Shamir, Atara Ofir, Gilad Marcus, “Nearly fully compressed 1053 nm pulses directly obtained from 800 nm laser-seeded photonic crystal fiber below zero dispersion point”, Proc. SPIE 10516, Nonlinear Frequency Generation and Conversion: Materials and Devices XVII, 1051607 (15 February 2018).

[46] Jinwei Zhang, Ka Fai Mak, Nathalie Nagl, Marcus Seidel, Dominik Bauer, Dirk Sutter, Vladimir Pervak, Ferenc Krausz & Oleg Pronin, “Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm−1”, Light: Science & Applications 7, 17180 (2018).

[45] O. de Vries, T. Schreiber, R. Eberhardt, A. Tünnermann, M. Windmüller, J. Riedel, M. Rößler, F. Kolb, “Design optimization of fiber amplifiers exposed to high gamma-radiation doses,” Proc. SPIE 10562, International Conference on Space Optics — ICSO 2016, 105620M (25 September 2017).

[44] Hao Luo, Li Zhan, Zhiqiang Wang, Liang Zhang, Cheng Feng, and Xuehao Shen, “All-Fiber Generation of Sub-30 fs Pulses at 1.3-μm via Cherenkov Radiation With Entire Dispersion Management,” J. Lightwave Technol. 35, 2325-2330 (2017)

[43] Joachim Buldt, Michael Müller, Robert Klas, Tino Eidam, Jens Limpert, and Andreas Tünnermann, “Temporal contrast enhancement of energetic laser pulses by filtered self-phase-modulation-broadened spectra,” Opt. Lett. 42, 3761-3764 (2017).

[42] Moritz Hinkelmann, Dieter Wandt, Uwe Morgner, Jörg Neumann, and Dietmar Kracht, “Mode-locked Ho-doped laser with subsequent diode-pumped amplifier in an all-fiber design operating at 2052 nm,” Opt. Express 25, 20522-20529 (2017).

[41] Marco Plötner, Victor Bock, Tim Schultze, Franz Beier, Thomas Schreiber, Ramona Eberhardt, and Andreas Tünnermann, “High power sub-ps pulse generation by compression of a frequency comb obtained by a nonlinear broadened two colored seed,” Opt. Express 25, 16476-16483 (2017).

[40] L. Lavenu, M. Natile, F. Guichard, Y. Zaouter, M. Hanna, E. Mottay, and P. Georges, “High-energy few-cycle Yb-doped fiber amplifier source based on a single nonlinear compression stage,” Opt. Express 25, 7530-7537 (2017).

[39] M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power nonlinear compression to 4  GW, sub-50  fs pulses at 2  μm wavelength,” Opt. Lett. 42, 747-750 (2017).

[38] Steffen Hädrich, Marco Kienel, Michael Müller, Arno Klenke, Jan Rothhardt, Robert Klas, Thomas Gottschall, Tino Eidam, András Drozdy, Péter Jójárt, Zoltán Várallyay, Eric Cormier, Károly Osvay, Andreas Tünnermann, and Jens Limpert, “Energetic sub-2-cycle laser with 216  W average power,” Opt. Lett. 41, 4332-4335 (2016).

[37] Martin Gebhardt, Christian Gaida, Fabian Stutzki, Steffen Hädrich, Cesar Jauregui, Jens Limpert, Andreas Tuennermann, “Self-compression to 24 MW peak power in a fused silica solid-core fiber using a high-repetition rate thulium-based fiber laser system,” Proc. SPIE 9728, Fiber Lasers XIII: Technology, Systems, and Applications, 97282H (March 11, 2016).

[36] D. Gaponov, L. Lavoute, S. Février, A. Hideur, N. Ducros, “2µm all-fiber dissipative soliton master oscillator power amplifier.” Proc. SPIE 9728, Fiber Lasers XIII: Technology, Systems, and Applications, 972834 (March 11, 2016).

[35] T. Gottschall, J. Limpert, and A. Tünnermann, “Widely tunable optical parametric oscillator based on four-wave mixing,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATu4A.9.

[34] C. Gaida, M. Gebhardt, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Self-compression in a solid fiber to 24  MW peak power with few-cycle pulses at 2  μm wavelength,” Opt. Lett. 40, 5160-5163 (2015)

[33] D. A. Gaponov, R. Dauliat, D. Darwich, T. Mansuryan, R. Jamier, S. Grimm, K. Schuster, and P. Roy, “High-power passively mode-locked dissipative soliton fiber laser featuring cladding-pumped non-CVD thulium-doped fiber,” J. Opt. Soc. Am. B 32, 1656-1659 (2015)

[32] Thomas Gottschall, Tobias Meyer, Michael Schmitt, Jürgen Popp, Jens Limpert, and Andreas Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23, 23968-23977 (2015)

[31] M. Gebhardt, C. Gaida, S. Hädrich, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70  fs in Kagome photonic crystal fiber,” Opt. Lett. 40, 2770-2773 (2015)

[30] Martin Gebhardt, Christian Gaida, Fabian Stutzki, Steffen Hädrich, Cesar Jauregui, Jens Limpert, and Andreas Tünnermann, “Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses,” Opt. Express 23, 13776-13787 (2015)

[29] M. Gebhardt, C. Gaida, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Sub-200 fs, nJ-level stretched-pulse thulium-doped fiber oscillator at 23MHz repetition rate,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper AM5A.43.

[28] F. Beier, H.-J. Otto, C. Jauregui, O. de Vries, T. Schreiber, J. Limpert, R. Eberhardt, and A. Tünnermann, “1009  nm continuous-wave ytterbium-doped fiber amplifier emitting 146  W,” Opt. Lett. 39, 3725-3727 (2014)

[27] Tongxiao Jiang, Aimin Wang, Guizhong Wang, Wei Zhang, Fuzeng Niu, Chen Li, and Zhigang Zhang, “Tapered photonic crystal fiber for simplified Yb:fiber laser frequency comb with low pulse energy and robust fceo singals,” Opt. Express 22, 1835-1841 (2014).

[26] Niu, F., Jiang, T., Wang, A., Wang, G., Li, C., & Zhang, Z. (2014, July). Design and fabrication of tapered photonic crystal fiber for astro-combs applications. In Optical Fibre Technology, 2014 OptoElectronics and Communication Conference and Australian Conference on (pp. 709-711). IEEE.

[25] Niu, F., Jiang, T., Wang, G., Li, C., Wang, A., & Zhang, Z. (2014, June). Green-enhanced super-continuum generation in a tapered photonic crystal fiber for efficient ƒ ceo detection. In Lasers and Electro-Optics (CLEO), 2014 Conference on (pp. 1-2). IEEE.

[24] Jiang, T., Wang, G., Wang, A., Zhang, W., Niu, F., Li, C., & Zhang, Z. (2014, July). Tapered photonic crystal fiber for simplified 500MHz Yb: Fiber laser frequency comb with no amplifier. In Optical Fibre Technology, 2014 OptoElectronics and Communication Conference and Australian Conference on (pp. 120-122). IEEE.

[23] Haxsen, F., Wienke, A., Wandt, D., Neumann, J., & Kracht, D. (2014). Tm-doped mode-locked fiber lasers. Optical Fiber Technology, 20(6), 650-656.

[22] Chi, J., Li, P., Liang, B., Yao, Y., Hu, H., Zhang, G., … & Ma, C. (2014). 100-W 430-ps all-fiber picosecond laser by using 10-/130-μm ytterbium-doped double-clad fiber and its application in SCS. Applied Physics B, 1-9.

[21] R. A. Sims, P. Kadwani, H. Ebendorff-Heideprem, L. Shah, T. M. Monro, M. Richardson, “Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating,” Applied Physics B, May 2013, Volume 111, Issue 2, pp 299-304

[20] Tongxiao Jiang, Guizhong Wang, Wei Zhang, Chen Li, Aimin Wang, and Zhigang Zhang, “Octave-spanning spectrum generation in tapered silica photonic crystal fiber by Yb:fiber ring laser above 500 MHz,” Opt. Lett. 38, 443-445 (2013).

[19] J. Lecourt, S. Boivinet, and Y. Hernandez, “All-normal dispersion, all-fibered, PM mode-locked laser and its modeling,” in International Photonics and Optoelectronics Meetings, OSA Technical Digest (online) (Optical Society of America, 2012), paper STh4A.03.

[18] Terniche, S., et al. “ETUDE DE LA PROPAGATION D’UNE IMPULSION COURTE EN CAVITE LASER AVEC UN LOGICIEL DE SIMULATION NUMERIQUE.” Journal of Fundamental and Applied Sciences 4.1 (2012): 66-73.

[17] Anthony Bertrand ; Flavien Liégeois ; Yves Hernandez and Domenico Giannone “Efficient high-power narrow-linewidth all-fibred linearly polarized ytterbium laser source”, Proc. SPIE 8433, Laser Sources and Applications, 84330F (June 1, 2012).

[16] Masayuki Suzuki, Motoyoshi Baba, Shin Yoneya and Hiroto Kuroda, Efficient spectral broadening of supercontinuum in photonic crystal fiber with self-phase modulation induced by femtosecond laser pulse, Appl. Phys. Lett. 101, 191110 (2012).

[15] J. Lhermite, C. Lecaplain, G. Machinet, R. Royon, A. Hideur, and E. Cormier, “Mode-locked 0.5 μJ fiber laser at 976 nm,” Opt. Lett. 36, 3819-3821 (2011)

[14] Frithjof Haxsen, Dieter Wandt, Uwe Morgner, Joerg Neumann, and Dietmar Kracht, “Pulse characteristics of a passively mode-locked thulium fiber laser with positive and negative cavity dispersion,” Opt. Express 18, 18981-18988 (2010)

[13] Michael Mielke, David Gaudiosi, Kyungbum Kim, Tolga Yilmaz, Michael Greenberg, Sha Tong, Xinhua Gu, Mark Geusen, Robert Cline, Mark Slovick, Neill Allen, Michael Manning, Barry Schuler and Steven Sapers, “Pulse and Amplifier Dynamics in High Energy Fiber Optic Ultrashort Pulse Laser Systems,” Proc. SPIE Vol. 7214 (Feb. 6, 2009).

[12] S. Hädrich, J. Rothhardt, F. Röser, T. Gottschall, J. Limpert, and A. Tünnermann, “Degenerate optical parametric amplifier delivering sub 30 fs pulses with 2GW peak power,” Opt. Express 16, 19812-19820 (2008)

[11] T. Eidam, F. Röser, O. Schmidt, J. Limpert and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Applied Physics B: Lasers and Optics, Vol. 92, 1, pp. 9-12 (2008)

[10] B. Ortaç, C. Lecaplain, A. Hideur, T. Schreiber, J. Limpert, and A. Tünnermann, “Passively mode-locked single-polarization microstructure fiber laser,” Opt. Express 16, 2122-2128 (2008)

[9] T. Schreiber, D. Schimpf, D. Müller, F. Röser, J. Limpert, and A. Tünnermann, “Influence of pulse shape in self-phase-modulation-limited chirped pulse fiber amplifier systems,” J. Opt. Soc. Am. B 24, 1809-1814 (2007)

[8] T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations,” Opt. Express 15, 8252-8262 (2007)

[7] C. Aguergaray, T. V. Andersen, D. N. Schimpf, O. Schmidt, J. Rothhardt, T. Schreiber, J. Limpert, E. Cormier, and A. Tünnermann, “Parametric amplification and compression to ultrashort pulse duration of resonant linear waves,” Opt. Express 15, 5699-5710 (2007)

[6] B. Ortac, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers,” Opt. Express 15, 15595-15602 (2007)

[5] T. V. Andersen, O. Schmidt, C. Bruchmann, J. Limpert, C. Aguergaray, E. Cormier, and A. Tünnermann, “High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier,” Opt. Express 14, 4765-4773 (2006)

[4] Thomas Schreiber, Carsten K. Nielsen, Bülend Ortac, Jens Limpert, and Andreas Tünnermann, “Microjoule-level all-polarization-maintaining femtosecond fiber source,” Opt. Lett. 31, 574-576 (2006)

[3] T. Schreiber, T. V. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13, 9556-9569 (2005)

[2] J. Limpert, C. Aguergaray, S. Montant, I. Manek-Hönninger, S. Petit, D. Descamps, E. Cormier, and F. Salin, “Ultra-broad bandwidth parametric amplification at degeneracy,” Opt. Express 13, 7386-7392 (2005)

[1] T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, K.P. Hansen, “High average power supercontinuum generation in photonic crystal fibers,” Optics Communications, Volume 228, Issues 1–3, 2003, Pages 71-78,

[0] J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, E.-B. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10, 628-638 (2002).

技术支持

如果您在使用该软件时遇到任何问题,请告诉我们,我们随时为您提供帮助。 还请查看常见问题解答部分,了解我们需要哪些信息,是否存在技术问题。

申请在线课程

您可以预订在线课程。 请注明参与人数和您喜欢的内容。 我们会回来给您报价。

常见问题(FAQ)

线性和非线性脉冲传输软件Fiberdesk

问题一:

可以将Fiberdesk软件用于纳秒脉冲或连续光吗?

原则上,非线性Schrödinger方程允许长脉冲的传输。但是,Brillioun散射没有实现。可以模拟拉曼散射。对于连续光,必须根据时间尺寸设置重复率,以使峰值和平均功率相等。从FiberdeskV5.0开始,提供“创建脉冲”对话框的功能,提供“cw”选项,它自动均衡重复率到时间窗口。

此外,频谱带宽由时间分辨率(数据点数量的时间窗口)给出。例如,对于最大数量的数据点,可以处理带宽为~100nm@1μm中心波长的80ns脉冲,其缺点是非常慢。此外,在没有非线性薛定谔方程的情况下,ns和cw光可以用由Fiberdesk软件提供的速率方程模拟。

线性和非线性脉冲传输软件Fiberdesk

问题二:

U盘保护导致软件无法启动或出错怎么办?

2020 年之后的 USB 加密狗不需要安装驱动程序,它会自动随 MS Windows 一起提供。

但是,如果需要安装 USB 加密狗驱动程序,例如访问下一个常见问题解答所需的信息页面,请执行以下步骤:

0. 移除 U 盘并以管理员权限启动您的计算机

1. 下载 Sentinel HASP/LDK – 命令行运行时安装程序

2. 请从命令行解压缩并启动包含文件 haspdinst.exe 以完全卸载所有以前的驱动程序:

haspdinst -purge

3.再次,从命令行,安装新的驱动程序

haspdinst -安装

4.插入U盘,启动fiberdesk

如果您仍然有问题,请联系我们。

线性和非线性脉冲传输软件Fiberdesk

问题三:

仍然收到错误信息?

请在您的Web浏览器中使用http:// localhost:1947,并将密钥的屏幕截图或功能号码发送给我们。

线性和非线性脉冲传输软件Fiberdesk

问题四:

即使 USB 加密狗正常工作,Fiberdesk 也不会启动。 还能做什么?

首先,请查看文件夹

C:\Users\%USER%\AppData\Roaming\fiberdesk

并将文件“_fiberdesk_0.log”发送给我们。 另外,请从命令行启动Fiberdesk(Windows键然后输入“cmd”+回车,切换到Fiberdesk文件夹并启动Fiberdesk)。 然后,请将命令行输出的屏幕截图发送给支持,请参见图片中的示例。

微信咨询